行人重识别Person Re-identification总结
Person re-identification, also known as person retrieval, is to match pedestrian images observed from non-overlapping camera views based on appearance.It receives increasing attentions in video surveillance for its important applications in threat detection, human retrieval, and multi-camera tracking. It saves a lot of human labor in exhaustively searching for a person of interest from large amounts of video sequences.
Last Updated: Apr 26, 2019
Table of Contents
generated with DocToc
- Leaderboard
- Person Re-identification / Person Retrieval
- Person Search
- Pose/View for Re-ID
- GAN for Re-ID
- Human Parsing for Re-ID
- Partial Person Re-ID
- RGB-IR Re-ID
- Depth-Based Re-ID
- Low Resolution Re-ID
- Reinforcement Learning for Re-ID
- Attributes Prediction for Re-ID
- Video Person Re-Identification
- Re-ranking
- Unsupervised Re-ID
- Weakly Supervised Person Re-identification
- Vehicle Re-ID
- Deep Metric Learning
- Projects
- Evaluation
- Datasets
- Tutorials
- Experts
- Resources
Leaderboard
Method | backbone | test size | Market1501 | CUHK03 (detected) | CUHK03 (detected/new) | CUHK03 (labeled/new) | CUHK-SYSU | DukeMTMC-reID | MARS |
---|---|---|---|---|---|---|---|---|---|
rank1 / mAP | rank1/ 5 / 10 | rank1 / mAP | rank1 / mAP | rank1 / mAP | rank1 / mAP | ||||
AlignedReID | ResNet50-X | 92.6 / 82.3 | 91.9 / 98.7 / 99.4 | 86.8 / 79.1 | 95.3 / 93.7 | ||||
AlignedReID (RK) | 94.0 / 91.2 | 96.1 / 99.5 / 99.6 | 87.5 / 85.6 | ||||||
Deep-Person(SQ) | ResNet-50 | 256×128 | 92.31 / 79.58 | 89.4 / 98.2 / 99.1 | 80.90 / 64.80 | ||||
Deep-Person(MQ) | ResNet-50 | 256×128 | 94.48 / 85.09 | ||||||
PCB(SQ) | ResNet-50 | 384x128 | 92.4 / 77.3 | 61.3 / 54.2 | 81.9 / 65.3 | ||||
PCB+RPP(SQ) | ResNet-50 | 384x128 | 93.8 / 81.6 | 63.7 / 57.5 | 83.3 / 69.2 | ||||
PN-GAN (SQ) | ResNet-50 | 89.43 / 72.58 | 79.76/ 96.24/ 98.56 | 73.58 / 53.20 | |||||
PN-GAN (MQ) | ResNet-50 | 95.90 / 91.37 | |||||||
MGN (SQ) | ResNet-50 | 95.7 / 86.9 | 66.8 / 66.0 | 68.0 / 67.4 | 88.7 / 78.4 | ||||
MGN (MQ) | ResNet-50 | 96.9 / 90.7 | |||||||
MGN (SQ+RK) | ResNet-50 | 96.6 / 94.2 | |||||||
MGN (MQ+RK) | ResNet-50 | 97.1 / 95.9 | |||||||
HPM(SQ) | ResNet-50 | 384x128 | 94.2 / 82.7 | 63.1 / 57.5 | 86.6 / 74.3 | ||||
HPM+HRE(SQ) | ResNet-50 | 384x128 | 93.9 / 83.1 | 63.2 / 59.7 | 86.3 / 74.5 | - | |||
SphereReID | ResNet-50 | 288×144 | 94.4 / 83.6 | 93.1 / 98.7 / 99.4 | 63.2 / 59.7 | 95.4 / 93.9 | 83.9 / 68.5 | - | |
Auto-ReID | 384x128 | 94.5 / 85.1 | 73.3 / 69.3 | 77.9 / 73.0 | 88.5 / 75.1 | - |
Person Re-identification / Person Retrieval
DeepReID: Deep Filter Pairing Neural Network for Person Re-Identification
intro: CVPR 2014
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf
An Improved Deep Learning Architecture for Person Re-Identification
intro: CVPR 2015
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2015_CVPR_paper.pdf
github: https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for-ReID
Deep Ranking for Person Re-identification via Joint Representation Learning
intro: IEEE Transactions on Image Processing (TIP), 2016
arxiv: https://arxiv.org/abs/1505.06821
PersonNet: Person Re-identification with Deep Convolutional Neural Networks
arxiv: http://arxiv.org/abs/1601.07255
Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification
intro: CVPR 2016
arxiv: https://arxiv.org/abs/1604.07528
github: https://github.com/Cysu/dgd_person_reid
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function
intro: CVPR 2016
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cheng_Person_Re-Identification_by_CVPR_2016_paper.pdf
Joint Learning of Single-image and Cross-image Representations for Person Re-identification
intro: CVPR 2016
paper: http://openaccess.thecvf.com/content_cvpr_2016/papers/Wang_Joint_Learning_of_CVPR_2016_paper.pdf
End-to-End Comparative Attention Networks for Person Re-identification
paper: https://arxiv.org/abs/1606.04404
A Multi-task Deep Network for Person Re-identification
intro: AAAI 2017
arxiv: http://arxiv.org/abs/1607.05369
A Siamese Long Short-Term Memory Architecture for Human Re-Identification
arxiv: http://arxiv.org/abs/1607.08381
Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification
intro: ECCV 2016
keywords: Market1501 rank1 = 65.9%
arxiv: https://arxiv.org/abs/1607.08378
Deep Neural Networks with Inexact Matching for Person Re-Identification
intro: NIPS 2016
keywords: Normalized correlation layer, CUHK03/CUHK01/QMULGRID
paper: https://papers.nips.cc/paper/6367-deep-neural-networks-with-inexact-matching-for-person-re-identification
github: https://github.com/InnovArul/personreid_normxcorr
Person Re-identification: Past, Present and Future
paper: https://arxiv.org/abs/1610.02984
note: https://blog.csdn.net/zdh2010xyz/article/details/53741682
Deep Learning Prototype Domains for Person Re-Identification
arxiv: https://arxiv.org/abs/1610.05047
Deep Transfer Learning for Person Re-identification
arxiv: https://arxiv.org/abs/1611.05244
note: https://blog.csdn.net/shenxiaolu1984/article/details/53607268
A Discriminatively Learned CNN Embedding for Person Re-identification
intro: TOMM 2017
arxiv: https://arxiv.org/abs/1611.05666
github(official, MatConvnet): https://github.com/layumi/2016_person_re-ID
github: https://github.com/D-X-Y/caffe-reid
Person Re-Identification via Recurrent Feature Aggregation
intro: ECCV 2016
keywords: recurrent feature aggregation network (RFA-Net)
arxiv: https://arxiv.org/abs/1701.06351
code: https://sites.google.com/site/yanyichao91sjtu/
github(official): https://github.com/daodaofr/caffe-re-id
Structured Deep Hashing with Convolutional Neural Networks for Fast Person Re-identification
arxiv: https://arxiv.org/abs/1702.04179
SVDNet for Pedestrian Retrieval
intro: ICCV 2017 spotlight
intro: On the Market-1501 dataset, rank-1 accuracy is improved from 55.2% to 80.5% for CaffeNet,
and from 73.8% to 83.1% for ResNet-50
arxiv: https://arxiv.org/abs/1703.05693
github: https://github.com/syfafterzy/SVDNet-for-Pedestrian-Retrieval
In Defense of the Triplet Loss for Person Re-Identification
arxiv: https://arxiv.org/abs/1703.07737
github(Theano): https://github.com/VisualComputingInstitute/triplet-reid
Beyond triplet loss: a deep quadruplet network for person re-identification
intro: CVPR 2017
arxiv: https://arxiv.org/abs/1704.01719
ppaper: http://cvip.computing.dundee.ac.uk/papers/Chen_CVPR_2017_paper.pdf
Quality Aware Network for Set to Set Recognition
intro: CVPR 2017
arxiv: https://arxiv.org/abs/1704.03373
github: https://github.com/sciencefans/Quality-Aware-Network
Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification
intro: CVPR 2017. CASIA
keywords: Multi-Scale Context-Aware Network (MSCAN)
arxiv: https://arxiv.org/abs/1710.06555
supplemental: Li_Learning_Deep_Context-Aware_2017_CVPR_supplemental.pdf
Point to Set Similarity Based Deep Feature Learning for Person Re-identification
intro: CVPR 2017
paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_Point_to_Set_CVPR_2017_paper.pdf
github(stay tuned): https://github.com/samaonline/Point-to-Set-Similarity-Based-Deep-Feature-Learning-for-Person-Re-identification
Scalable Person Re-identification on Supervised Smoothed Manifold
intro: CVPR 2017 spotlight
arxiv: https://arxiv.org/abs/1703.08359
youtube: https://www.youtube.com/watch?v=bESdJgalQrg
Attention-based Natural Language Person Retrieval
intro: CVPR 2017 Workshop (vision meets cognition)
keywords: Bidirectional Long Short Term Memory (BLSTM)
arxiv: https://arxiv.org/abs/1705.08923
Part-based Deep Hashing for Large-scale Person Re-identification
intro: IEEE Transactions on Image Processing, 2017
arxiv: https://arxiv.org/abs/1705.02145
Deep Person Re-Identification with Improved Embedding and Efficient Training
intro: IJCB 2017
arxiv: https://arxiv.org/abs/1705.03332
Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters
arxiv: https://arxiv.org/abs/1705.04608
github: https://github.com/VisualComputingInstitute/towards-reid-tracking
Person Re-Identification by Deep Joint Learning of Multi-Loss Classification
intro: IJCAI 2017
arxiv: https://arxiv.org/abs/1705.04724
Deep Representation Learning with Part Loss for Person Re-Identification
keywords: Part Loss Networks
arxiv: https://arxiv.org/abs/1707.00798
Pedestrian Alignment Network for Large-scale Person Re-identification
arxiv: https://arxiv.org/abs/1707.00408
github: https://github.com/layumi/Pedestrian_Alignment
Learning Efficient Image Representation for Person Re-Identification
arxiv: https://arxiv.org/abs/1707.02319
Person Re-identification Using Visual Attention
intro: ICIP 2017
arxiv: https://arxiv.org/abs/1707.07336
What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification
arxiv: https://arxiv.org/abs/1707.07074
Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification
arxiv: https://arxiv.org/abs/1707.07791
Large Margin Learning in Set to Set Similarity Comparison for Person Re-identification
intro: IEEE Transactions on Multimedia
arxiv: https://arxiv.org/abs/1708.05512
Multi-scale Deep Learning Architectures for Person Re-identification
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1709.05165
Person Re-Identification by Deep Learning Multi-Scale Representations
intro: ICCV 2017
keywords: Deep Pyramid Feature Learning (DPFL)
paper: Chen_Person_Re-Identification_by_ICCV_2017_paper.pdf
paper: http://www.eecs.qmul.ac.uk/~sgg/papers/ChenEtAl_ICCV2017WK_CHI.pdf
HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis
intro: ICCV 2017. CUHK & SenseTime,
arxiv: https://arxiv.org/abs/1709.09930
github: https://github.com/xh-liu/HydraPlus-Net
Person Re-Identification with Vision and Language
arxiv: https://arxiv.org/abs/1710.01202
Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification
arxiv: https://arxiv.org/abs/1710.00478
Pseudo-positive regularization for deep person re-identification
arxiv: https://arxiv.org/abs/1711.06500
Let Features Decide for Themselves: Feature Mask Network for Person Re-identification
keywords: Feature Mask Network (FMN)
arxiv: https://arxiv.org/abs/1711.07155
AlignedReID: Surpassing Human-Level Performance in Person Re-Identification
intro: Megvii Inc & Zhejiang University
arxiv: https://arxiv.org/abs/1711.08184
evaluation website: (Market1501): http://reid-challenge.megvii.com/
evaluation website: (CUHK03): http://reid-challenge.megvii.com/cuhk03
github: https://github.com/huanghoujing/AlignedReID-Re-Production-Pytorch
Region-based Quality Estimation Network for Large-scale Person Re-identification
intro: AAAI 2018
arxiv: https://arxiv.org/abs/1711.08766
Beyond Part Models: Person Retrieval with Refined Part Pooling
keywords: Part-based Convolutional Baseline (PCB), Refined Part Pooling (RPP)
arxiv: https://arxiv.org/abs/1711.09349
Deep-Person: Learning Discriminative Deep Features for Person Re-Identification
arxiv: https://arxiv.org/abs/1711.10658
Hierarchical Cross Network for Person Re-identification
arxiv: https://arxiv.org/abs/1712.06820
Re-ID done right: towards good practices for person re-identification
arxiv: https://arxiv.org/abs/1801.05339
Triplet-based Deep Similarity Learning for Person Re-Identification
intro: ICCV Workshops 2017
arxiv: https://arxiv.org/abs/1802.03254
Group Consistent Similarity Learning via Deep CRFs for Person Re-Identification
intro: CVPR 2018 oral
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Group_Consistent_Similarity_CVPR_2018_paper.pdf
Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification
intro: CVPR 2018
keywords: similarity preserving generative adversarial network (SPGAN), Siamese network, CycleGAN, domain adaptation
arxiv: https://arxiv.org/abs/1711.07027
Harmonious Attention Network for Person Re-Identification
intro: CVPR 2018
keywords: Harmonious Attention CNN (HA-CNN)
arxiv: https://arxiv.org/abs/1802.08122
Camera Style Adaptation for Person Re-identfication
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1711.10295
github: https://github.com/zhunzhong07/CamStyle
Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1711.07027
Dual Attention Matching Network for Context-Aware Feature Sequence based Person Re-Identification
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1803.09937
Multi-Level Factorisation Net for Person Re-Identification
intro: CVPR 2018
keywords: Multi-Level Factorisation Net (MLFN)
arxiv: https://arxiv.org/abs/1803.09132
Features for Multi-Target Multi-Camera Tracking and Re-Identification
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1803.10859
Good Appearance Features for Multi-Target Multi-Camera Tracking
intro: CVPR 2018 spotlight. Duke University
keywords: adaptive weighted triplet loss, hard-identity mining
project page: http://vision.cs.duke.edu/DukeMTMC/
arxiv: https://arxiv.org/abs/1803.10859
Mask-guided Contrastive Attention Model for Person Re-Identification
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Song_Mask-Guided_Contrastive_Attention_CVPR_2018_paper.pdf
Efficient and Deep Person Re-Identification using Multi-Level Similarity
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1803.11353
Person Re-identification with Cascaded Pairwise Convolutions
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Person_Re-Identification_With_CVPR_2018_paper.pdf
Attention-Aware Compositional Network for Person Re-identification
intro: CVPR 2018
intro: Sensets Technology Limited & University of Sydney
keywords: Attention-Aware Compositional Network (AACN), Pose-guided Part Attention (PPA), Attention-aware Feature Composition (AFC)
arxiv: https://arxiv.org/abs/1805.03344
Deep Group-shuffling Random Walk for Person Re-identification
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_Deep_Group-Shuffling_Random_CVPR_2018_paper.pdf
Adversarially Occluded Samples for Person Re-identification
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_Adversarially_Occluded_Samples_CVPR_2018_paper.pdf
Easy Identification from Better Constraints: Multi-Shot Person Re-Identification from Reference Constraints
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Easy_Identification_From_CVPR_2018_paper.pdf
Eliminating Background-bias for Robust Person Re-identification
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Tian_Eliminating_Background-Bias_for_CVPR_2018_paper.pdf
End-to-End Deep Kronecker-Product Matching for Person Re-identification
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_End-to-End_Deep_Kronecker-Product_CVPR_2018_paper.pdf
Exploiting Transitivity for Learning Person Re-identification Models on a Budget
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Roy_Exploiting_Transitivity_for_CVPR_2018_paper.pdf
Resource Aware Person Re-identification across Multiple Resolutions
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Resource_Aware_Person_CVPR_2018_paper.pdf
Multi-Channel Pyramid Person Matching Network for Person Re-Identification
intro: 32nd AAAI Conference on Artificial Intelligence
keywords: Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN)
arxiv: https://arxiv.org/abs/1803.02558
Pyramid Person Matching Network for Person Re-identification
intro: 9th Asian Conference on Machine Learning (ACML2017) JMLR Workshop and Conference Proceedings
arxiv: https://arxiv.org/abs/1803.02547
Virtual CNN Branching: Efficient Feature Ensemble for Person Re-Identification
arxiv: https://arxiv.org/abs/1803.05872
Adversarial Binary Coding for Efficient Person Re-identification
arxiv: https://arxiv.org/abs/1803.10914
Learning View-Specific Deep Networks for Person Re-Identification
intro: IEEE Transactions on image processing. Sun Yat-Sen University
keywords: cross-view Euclidean constraint (CV-EC), cross-view center loss (CV-CL)
arxiv: https://arxiv.org/abs/1803.11333
Learning Discriminative Features with Multiple Granularities for Person Re-Identification
intro: Shanghai Jiao Tong University & CloudWalk
keywords: Multiple Granularity Network (MGN)
arxiv: https://arxiv.org/abs/1804.01438
Recurrent Neural Networks for Person Re-identification Revisited
intro: Stanford University & Google AI
arxiv: https://arxiv.org/abs/1804.03281
MaskReID: A Mask Based Deep Ranking Neural Network for Person Re-identification
arxiv: https://arxiv.org/abs/1804.03864
Horizontal Pyramid Matching for Person Re-identification
intro: AAAI 2019
intro: UIUC & IBM Research & Cornell University & Stevens Institute of Technology &CloudWalk Technology
keywords: Horizontal Pyramid Matching (HPM), Horizontal Pyramid Pooling (HPP), horizontal random erasing (HRE)
arxiv: https://arxiv.org/abs/1804.05275
github: https://github.com/OasisYang/HPM
Part-Aligned Bilinear Representations for Person Re-identification
intro: Seoul National University & Microsoft Research & Max Planck Institute & University of Tubingen & JD.COM
arxiv: https://arxiv.org/abs/1804.07094
Deep Co-attention based Comparators For Relative Representation Learning in Person Re-identification
arxiv: https://arxiv.org/abs/1804.11027
Feature Affinity based Pseudo Labeling for Semi-supervised Person Re-identification
arxiv: https://arxiv.org/abs/1805.06118
Resource Aware Person Re-identification across Multiple Resolutions
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1805.08805
Semantically Selective Augmentation for Deep Compact Person Re-Identification
arxiv: https://arxiv.org/abs/1806.04074
SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identification
intro: it achieves 94.4% rank-1 accuracy on Market-1501 and 83.9% rank-1 accuracy on DukeMTMC-reID
arxiv: https://arxiv.org/abs/1807.00537
Multi-task Mid-level Feature Alignment Network for Unsupervised Cross-Dataset Person Re-Identification
intro: BMVC 2018. University of Warwick & Nanyang Technological University & Charles Sturt University
arxiv: https://arxiv.org/abs/1807.01440
Discriminative Feature Learning with Foreground Attention for Person Re-Identification
arxiv: https://arxiv.org/abs/1807.01455
Part-Aligned Bilinear Representations for Person Re-identification
intro: ECCV 2018
intro: Seoul National University & Microsoft Research & Max Planck Institute & University of Tubingen & JD.COM
arxiv: https://arxiv.org/abs/1804.07094
github: https://github.com/yuminsuh/part_bilinear_reid
Mancs: A Multi-task Attentional Network with Curriculum Sampling for Person Re-identification
intro: ECCV 2018. Huazhong University of Science and Technology & Horizon Robotics Inc.
Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association
intro: ECCV 2018
arxiv: https://arxiv.org/abs/1808.01571
Deep Sequential Multi-camera Feature Fusion for Person Re-identification
arxiv: https://arxiv.org/abs/1807.07295
Improving Deep Models of Person Re-identification for Cross-Dataset Usage
intro: AIAI 2018 (14th International Conference on Artificial Intelligence Applications and Innovations) proceeding
arxiv: https://arxiv.org/abs/1807.08526
Measuring the Temporal Behavior of Real-World Person Re-Identification
arxiv: https://arxiv.org/abs/1808.05499
Alignedreid++: Dynamically Matching Local Information for Person Re-Identification
github: https://github.com/michuanhaohao/AlignedReID
Sparse Label Smoothing for Semi-supervised Person Re-Identification
arxiv: https://arxiv.org/abs/1809.04976
github: https://github.com/jpainam/SLS_ReID
In Defense of the Classification Loss for Person Re-Identification
intro: University of Science and Technology of China & Microsoft Research Asia
arxiv: https://arxiv.org/abs/1809.05864
FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification
intro: NIPS 2018
arxiv: https://arxiv.org/abs/1810.02936
github(Pytorch, official): https://github.com/yxgeee/FD-GAN
Image-to-Video Person Re-Identification by Reusing Cross-modal Embeddings
arxiv: https://arxiv.org/abs/1810.03989
Attention Driven Person Re-identification
intro: Pattern Recognition (PR)
arxiv: https://arxiv.org/abs/1810.05866
A Coarse-to-fine Pyramidal Model for Person Re-identification via Multi-Loss Dynamic Training
intro: YouTu Lab, Tencent
arxiv: https://arxiv.org/abs/1810.12193
M2M-GAN: Many-to-Many Generative Adversarial Transfer Learning for Person Re-Identification
arxiv: https://arxiv.org/abs/1811.03768
Batch Feature Erasing for Person Re-identification and Beyond
arxiv: https://arxiv.org/abs/1811.07130
github(official, Pytorch): https://github.com/daizuozhuo/batch-feature-erasing-network
Re-Identification with Consistent Attentive Siamese Networks
arxiv: https://arxiv.org/abs/1811.07487
One Shot Domain Adaptation for Person Re-Identification
arxiv: https://arxiv.org/abs/1811.10144
Parameter-Free Spatial Attention Network for Person Re-Identification
arxiv: https://arxiv.org/abs/1811.12150
Spectral Feature Transformation for Person Re-identification
intro: University of Chinese Academy of Sciences & TuSimple
arxiv: https://arxiv.org/abs/1811.11405
Identity Preserving Generative Adversarial Network for Cross-Domain Person Re-identification
arxiv: https://arxiv.org/abs/1811.11510
Dissecting Person Re-identification from the Viewpoint of Viewpoint
arxiv: https://arxiv.org/abs/1812.02162
Fast and Accurate Person Re-Identification with RMNet
intro: IOTG Computer Vision (ICV), Intel
arxiv: https://arxiv.org/abs/1812.02465
Spatial-Temporal Person Re-identification
intro: AAAI 2019
intro: Sun Yat-sen University
arxiv: https://arxiv.org/abs/1812.03282
github: https://github.com/Wanggcong/Spatial-Temporal-Re-identification
Omni-directional Feature Learning for Person Re-identification
intro: Tongji University
keywords: OIM loss
arxiv: https://arxiv.org/abs/1812.05319
Learning Incremental Triplet Margin for Person Re-identification
intro: AAAI 2019 spotlight
intro: Hikvision Research Institute
arxiv: https://arxiv.org/abs/1812.06576
Densely Semantically Aligned Person Re-Identification
intro: USTC & MSRA
arxiv: https://arxiv.org/abs/1812.08967
EANet: Enhancing Alignment for Cross-Domain Person Re-identification
intro: CRISE & CASIA & Horizon Robotics
arxiv: https://arxiv.org/abs/1812.11369
github(official, Pytorch): https://github.com/huanghoujing/EANet
blog: https://zhuanlan.zhihu.com/p/53660395
Backbone Can Not be Trained at Once: Rolling Back to Pre-trained Network for Person Re-Identification
intro: AAAI 2019
intro: Seoul National University & Samsung SDS
arxiv: https://arxiv.org/abs/1901.06140
Ensemble Feature for Person Re-Identification
keywords: EnsembleNet
arxiv: https://arxiv.org/abs/1901.05798
Adversarial Metric Attack for Person Re-identification
intro: University of Oxford & Johns Hopkins University
arxiv: https://arxiv.org/abs/1901.10650
Discovering Underlying Person Structure Pattern with Relative Local Distance for Person Re-identification
intro: SYSU
arxiv: https://arxiv.org/abs/1901.10100
github: https://github.com/Wanggcong/RLD_codes
Attributes-aided Part Detection and Refinement for Person Re-identification
arxiv: https://arxiv.org/abs/1902.10528
Bags of Tricks and A Strong Baseline for Deep Person Re-identification
arxiv: https://arxiv.org/abs/1903.07071
github: https://github.com/michuanhaohao/reid-strong-baseline
Auto-ReID: Searching for a Part-aware ConvNet for Person Re-Identification
keywords: NAS
arxiv: https://arxiv.org/abs/1903.09776
Perceive Where to Focus: Learning Visibility-aware Part-level Features for Partial Person Re-identification
intro: CVPR 2019
intro: Tsinghua University & Megvii Technology
keywords: Visibility-aware Part Model (VPM)
arxiv: https://arxiv.org/abs/1904.00537
Pedestrian re-identification based on Tree branch network with local and global learning
intro: ICME 2019 oral
arxiv: https://arxiv.org/abs/1904.00355
Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification
intro: CVPR 2019
arxiv: https://arxiv.org/abs/1904.01990
github: https://github.com/zhunzhong07/ECN
Person Re-identification with Bias-controlled Adversarial Training
arxiv: https://arxiv.org/abs/1904.00244
Person Re-identification with Metric Learning using Privileged Information
intro: IEEE TIP
arxiv: https://arxiv.org/abs/1904.05005
Joint Discriminative and Generative Learning for Person Re-identification
intro: CVPR 2019 oral
intro: NVIDIA & University of Technology Sydney & Australian National University
arxiv: https://arxiv.org/abs/1904.07223
Person Search
Joint Detection and Identification Feature Learning for Person Search
intro: CVPR 2017 Spotlight
keywords: Online Instance Matching (OIM) loss function
homepage(dataset+code):http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html
arxiv: https://arxiv.org/abs/1604.01850
paper: http://www.ee.cuhk.edu.hk/~xgwang/PS/paper.pdf
github(official. Caffe): https://github.com/ShuangLI59/person_search
Person Re-identification in the Wild
intro: CVPR 2017 spotlight
keywords: PRW dataset
project page: http://www.liangzheng.com.cn/Project/project_prw.html
arxiv: https://arxiv.org/abs/1604.02531
github: https://github.com/liangzheng06/PRW-baseline
youtube: https://www.youtube.com/watch?v=dbOGwBITJqo
IAN: The Individual Aggregation Network for Person Search
arxiv: https://arxiv.org/abs/1705.05552
Neural Person Search Machines
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1707.06777
End-to-End Detection and Re-identification Integrated Net for Person Search
keywords: I-Net
arxiv: https://arxiv.org/abs/1804.00376
Person Search via A Mask-guided Two-stream CNN Model
intro: ECCV 2018
arxiv: https://arxiv.org/abs/1807.08107
Person Search by Multi-Scale Matching
intro: ECCV 2018
keywords: Cross-Level Semantic Alignment (CLSA)
arxiv: https://arxiv.org/abs/1807.08582
Learning Context Graph for Person Search
intro: CVPR 2019
intro: Shanghai Jiao Tong University & Tencent YouTu Lab & Inception Institute of Artificial Intelligence, UAE
arxiv: https://arxiv.org/abs/1904.01830
Pose/View for Re-ID
Pose Invariant Embedding for Deep Person Re-identification
keywords: pose invariant embedding (PIE), PoseBox fusion (PBF) CNN
arixv: https://arxiv.org/abs/1701.07732
Deeply-Learned Part-Aligned Representations for Person Re-Identification
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1707.07256
github(official, Caffe): https://github.com/zlmzju/part_reid
Spindle Net: Person Re-identification with Human Body Region Guided Feature Decomposition and Fusion
intro: CVPR 2017
paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Spindle_Net_Person_CVPR_2017_paper.pdf
github: https://github.com/yokattame/SpindleNet
Pose-driven Deep Convolutional Model for Person Re-identification
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1709.08325
A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1711.10378
github(official): https://github.com/pse-ecn/pose-sensitive-embedding
Pose-Driven Deep Models for Person Re-Identification
intro: Masters thesis
arxiv: https://arxiv.org/abs/1803.08709
Pose Transferrable Person Re-Identification
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Pose_Transferrable_Person_CVPR_2018_paper.pdf
Person re-identification with fusion of hand-crafted and deep pose-based body region features
arxiv: https://arxiv.org/abs/1803.10630
GAN for Re-ID
Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1701.07717
github(official, Matlab): https://github.com/layumi/Person-reID_GAN
github: https://github.com/qiaoguan/Person-reid-GAN-pytorch
Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
intro: CVPR 2018 spotlight
intro: PTGAN
arxiv: https://arxiv.org/abs/1711.08565
github: https://github.com/JoinWei-PKU/PTGAN
Pose-Normalized Image Generation for Person Re-identification
keywords: PN-GAN
arxiv: https://arxiv.org/abs/1712.02225
github: https://github.com/naiq/PN_GAN
Multi-pseudo Regularized Label for Generated Samples in Person Re-Identification
arxiv: https://arxiv.org/abs/1801.06742
Human Parsing for Re-ID
Human Semantic Parsing for Person Re-identification
intro: CVPR 2018. SPReID
arxiv: https://arxiv.org/abs/1804.00216
Improved Person Re-Identification Based on Saliency and Semantic Parsing with Deep Neural Network Models
keywords: Saliency-Semantic Parsing Re-Identification (SSP-ReID)
arxiv: https://arxiv.org/abs/1807.05618
Partial Person Re-ID
Partial Person Re-identification
intro: ICCV 2015
arxiv: https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Partial_Person_Re-Identification_ICCV_2015_paper.pdf
Deep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-Free Approach
intro: CVPR 2018.
keywords: Market1501 rank1=83.58%
arxiv: https://arxiv.org/abs/1801.00881
Occluded Person Re-identification
intro: ICME 2018
arxiv: https://arxiv.org/abs/1804.02792
Partial Person Re-identification with Alignment and Hallucination
intro: Imperial College London
keywords: Partial Matching Net (PMN)
arxiv: https://arxiv.org/abs/1807.09162
SCPNet: Spatial-Channel Parallelism Network for Joint Holistic and Partial Person Re-Identification
intro: ACCV 2018
arxiv: https://arxiv.org/abs/1810.06996
STNReID : Deep Convolutional Networks with Pairwise Spatial Transformer Networks for Partial Person Re-identification
intro: Zhejiang University & Megvii Inc
arxiv: https://arxiv.org/abs/1903.07072
Foreground-aware Pyramid Reconstruction for Alignment-free Occluded Person Re-identification
arxiv: https://arxiv.org/abs/1904.04975
RGB-IR Re-ID
RGB-Infrared Cross-Modality Person Re-Identification
arxiv: Wu_RGB-Infrared_Cross-Modality_Person_ICCV_2017_paper.pdf
Depth-Based Re-ID
Reinforced Temporal Attention and Split-Rate Transfer for Depth-Based Person Re-Identification
intro: ECCV 2018
arxiv: Nikolaos_Karianakis_Reinforced_Temporal_Attention_ECCV_2018_paper.pdf
A Cross-Modal Distillation Network for Person Re-identification in RGB-Depth
arxiv: https://arxiv.org/abs/1810.11641
Low Resolution Re-ID
Multi-scale Learning for Low-resolution Person Re-identification
intro: ICCV 2015
arxiv: https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Li_Multi-Scale_Learning_for_ICCV_2015_paper.pdf
Cascaded SR-GAN for Scale-Adaptive Low Resolution Person Re-identification
intro: IJCAI 2018
arxiv: https://www.ijcai.org/proceedings/2018/0541.pdf
Deep Low-Resolution Person Re-Identification
intro: AAAI 2018
keywords: Super resolution and Identity joiNt learninG (SING)
paper: http://www.eecs.qmul.ac.uk/~xiatian/papers/JiaoEtAl_2018AAAI.pdf
Reinforcement Learning for Re-ID
Deep Reinforcement Learning Attention Selection for Person Re-Identification
Identity Alignment by Noisy Pixel Removal
intro: BMVC 2017
arxiv: https://arxiv.org/abs/1707.02785
paper: http://www.eecs.qmul.ac.uk/~sgg/papers/LanEtAl_2017BMVC.pdf
Attributes Prediction for Re-ID
Multi-Task Learning with Low Rank Attribute Embedding for Person Re-identification
intro: ICCV 2015
paper: http://legacydirs.umiacs.umd.edu/~fyang/papers/iccv15.pdf
Deep Attributes Driven Multi-Camera Person Re-identification
intro: ECCV 2016
arxiv: https://arxiv.org/abs/1605.03259
Improving Person Re-identification by Attribute and Identity Learning
arxiv: https://arxiv.org/abs/1703.07220
Person Re-identification by Deep Learning Attribute-Complementary Information
intro: CVPR 2017 workshop
paper: https://sci-hub.tw/10.1109/CVPRW.2017.186
CA3Net: Contextual-Attentional Attribute-Appearance Network for Person Re-Identification
arxiv: https://arxiv.org/abs/1811.07544
Video Person Re-Identification
Recurrent Convolutional Network for Video-based Person Re-Identification
intro: CVPR 2016
paper: McLaughlin_Recurrent_Convolutional_Network_CVPR_2016_paper.pdf
github: https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID
Deep Recurrent Convolutional Networks for Video-based Person Re-identification: An End-to-End Approach
arxiv: https://arxiv.org/abs/1606.01609
Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1708.02286
Three-Stream Convolutional Networks for Video-based Person Re-Identification
arxiv: https://arxiv.org/abs/1712.01652
LVreID: Person Re-Identification with Long Sequence Videos
arxiv: https://arxiv.org/abs/1712.07286
Multi-shot Pedestrian Re-identification via Sequential Decision Making
intro: CVPR 2018. TuSimple
keywords: reinforcement learning
arxiv: https://arxiv.org/abs/1712.07257
github: https://github.com/TuSimple/rl-multishot-reid
LVreID: Person Re-Identification with Long Sequence Videos
arxiv: https://arxiv.org/abs/1712.07286
Diversity Regularized Spatiotemporal Attention for Video-based Person Re-identification
intro: CUHK-SenseTime & Argo AI
arxiv: https://arxiv.org/abs/1803.09882
Video Person Re-identification with Competitive Snippet-similarity Aggregation and Co-attentive Snippet Embedding
intro: CVPR 2018 Poster
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Video_Person_Re-Identification_CVPR_2018_paper.pdf
Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf
Revisiting Temporal Modeling for Video-based Person ReID
arxiv: https://arxiv.org/abs/1805.02104
github: https://github.com/jiyanggao/Video-Person-ReID
Video Person Re-identification by Temporal Residual Learning
arxiv: https://arxiv.org/abs/1802.07918
A Spatial and Temporal Features Mixture Model with Body Parts for Video-based Person Re-Identification
arxiv: https://arxiv.org/abs/1807.00975
Video-based Person Re-identification via 3D Convolutional Networks and Non-local Attention
intro: University of Science and Technology of China & University of Chinese Academy of Sciences
arxiv: https://arxiv.org/abs/1807.05073
Spatial-Temporal Synergic Residual Learning for Video Person Re-Identification
arxiv: https://arxiv.org/abs/1807.05799
Where-and-When to Look: Deep Siamese Attention Networks for Video-based Person Re-identification
intro: IEEE Transactions on Multimedia
arxiv: https://arxiv.org/abs/1808.01911
STA: Spatial-Temporal Attention for Large-Scale Video-based Person Re-Identification
intro: AAAI 2019
arxiv: https://arxiv.org/abs/1811.04129
Multi-scale 3D Convolution Network for Video Based Person Re-Identification
intro: AAAI 2019
arxiv: https://arxiv.org/abs/1811.07468
Deep Active Learning for Video-based Person Re-identification
arxiv: https://arxiv.org/abs/1812.05785
Spatial and Temporal Mutual Promotion for Video-based Person Re-identification
intro: AAAI 2019
arxiv: https://arxiv.org/abs/1812.10305
3D PersonVLAD: Learning Deep Global Representations for Video-based Person Re-identification
arxiv: https://arxiv.org/abs/1812.10222
SCAN: Self-and-Collaborative Attention Network for Video Person Re-identification
intro: TIP 2019
arxiv: https://arxiv.org/abs/1807.05688
GAN-based Pose-aware Regulation for Video-based Person Re-identification
intro: Heriot-Watt University & University of Edinburgh & Queen’s University Belfast & Anyvision
keywords: Weighted Fusion (WF) & Weighted-Pose Regulation (WPR)
arxiv: https://arxiv.org/abs/1903.11552
Convolutional Temporal Attention Model for Video-based Person Re-identification
intro: ICME 2019
arxiv: https://arxiv.org/abs/1904.04492
Re-ranking
Divide and Fuse: A Re-ranking Approach for Person Re-identification
intro: BMVC 2017
arxiv: https://arxiv.org/abs/1708.04169
Re-ranking Person Re-identification with k-reciprocal Encoding
intro: CVPR 2017
arxiv: https://arxiv.org/abs/1701.08398
github: https://github.com/zhunzhong07/person-re-ranking
A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1711.10378
github(official): https://github.com/pse-ecn/expanded-cross-neighborhood
Adaptive Re-ranking of Deep Feature for Person Re-identification
arxiv: https://arxiv.org/abs/1811.08561
Unsupervised Re-ID
Unsupervised Person Re-identification: Clustering and Fine-tuning
arxiv: https://arxiv.org/abs/1705.10444
github: https://github.com/hehefan/Unsupervised-Person-Re-identification-Clustering-and-Fine-tuning
Stepwise Metric Promotion for Unsupervised Video Person Re-identification
intro: ICCV 2017
paper: http://openaccess.thecvf.com/content_ICCV_2017/papers/Liu_Stepwise_Metric_Promotion_ICCV_2017_paper.pdf
github: https://github.com/lilithliu/StepwiseMetricPromotion-code
Dynamic Label Graph Matching for Unsupervised Video Re-Identification
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1709.09297
github: https://github.com/mangye16/dgm_re-id
Unsupervised Cross-dataset Person Re-identification by Transfer Learning of Spatio-temporal Patterns
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1803.07293
github: https://github.com/ahangchen/TFusion
blog: https://zhuanlan.zhihu.com/p/34778414
Cross-dataset Person Re-Identification Using Similarity Preserved Generative Adversarial Networks
arxiv: https://arxiv.org/abs/1806.04533
Transferable Joint Attribute-Identity Deep Learning for Unsupervised Person Re-Identification
intro: CVPR 2018
arxiv: https://arxiv.org/abs/1803.09786
Adaptation and Re-Identification Network: An Unsupervised Deep Transfer Learning Approach to Person Re-Identification
intro: CVPR 2018 workshop. National Taiwan University & Umbo Computer Vision
keywords: adaptation and re-identification network (ARN)
arxiv: https://arxiv.org/abs/1804.09347
Domain Adaptation through Synthesis for Unsupervised Person Re-identification
arxiv: https://arxiv.org/abs/1804.10094
Deep Association Learning for Unsupervised Video Person Re-identification
intro: BMVC 2018
arxiv: https://arxiv.org/abs/1808.07301
Support Neighbor Loss for Person Re-Identification
intro: ACM Multimedia (ACM MM) 2018
arxiv: https://arxiv.org/abs/1808.06030
Unsupervised Person Re-identification by Deep Learning Tracklet Association
intro: ECCV 2018 Oral
arxiv: https://arxiv.org/abs/1809.02874
Unsupervised Tracklet Person Re-Identification
intro: TPAMI 2019
arxiv: https://arxiv.org/abs/1903.00535
github: https://github.com/liminxian/DukeMTMC-SI-Tracklet
Unsupervised Person Re-identification by Deep Asymmetric Metric Embedding
intro: TPAMI
keywords: DEep Clustering-based Asymmetric MEtric Learning (DECAMEL)
arxiv: https://arxiv.org/abs/1901.10177
github: https://github.com/KovenYu/DECAMEL
Unsupervised Person Re-identification by Soft Multilabel Learning
intro: CVPR 2019 oral
intro: Sun Yat-sen University & YouTu Lab & Queen Mary University of London
keywords: MAR (MultilAbel Reference learning), soft multilabel-guided hard negative mining
project page: https://kovenyu.com/publication/2019-cvpr-mar/
arxiv: https://arxiv.org/abs/1903.06325
github(official, Pytorch): https://github.com/KovenYu/MAR
A Novel Unsupervised Camera-aware Domain Adaptation Framework for Person Re-identification
arxiv: https://arxiv.org/abs/1904.03425
Weakly Supervised Person Re-identification
Weakly Supervised Person Re-Identification
intro: CVPR 2019
keywords: multi-instance multi-label learning (MIML), Cross-View MIML (CV-MIML)
arxiv: https://arxiv.org/abs/1904.03832
Weakly Supervised Person Re-identification: Cost-effective Learning with A New Benchmark
keywords: SYSU-30k
arxiv: https://arxiv.org/abs/1904.03845
Vehicle Re-ID
Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals
intro: ICCV 2017
arxiv: https://arxiv.org/abs/1708.03918
Viewpoint-Aware Attentive Multi-View Inference for Vehicle Re-Identification
intro: CVPR 2018
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Viewpoint-Aware_Attentive_Multi-View_CVPR_2018_paper.pdf
RAM: A Region-Aware Deep Model for Vehicle Re-Identification
intro: ICME 2018
arxiv: https://arxiv.org/abs/1806.09283
Vehicle Re-Identification in Context
intro: Pattern Recognition - 40th German Conference, (GCPR) 2018, Stuttgart
project page: https://qmul-vric.github.io/
arxiv: https://arxiv.org/abs/1809.09409
Vehicle Re-identification Using Quadruple Directional Deep Learning Features
arxiv: https://arxiv.org/abs/1811.05163
Coarse-to-fine: A RNN-based hierarchical attention model for vehicle re-identification
intro: ACCV 2018
arxiv: https://arxiv.org/abs/1812.04239
Vehicle Re-Identification: an Efficient Baseline Using Triplet Embedding
arxiv: https://arxiv.org/abs/1901.01015
A Two-Stream Siamese Neural Network for Vehicle Re-Identification by Using Non-Overlapping Cameras
intro: ICIP 2019
arxiv: https://arxiv.org/abs/1902.01496
CityFlow: A City-Scale Benchmark for Multi-Target Multi-Camera Vehicle Tracking and Re-Identification
intro: Accepted for oral presentation at CVPR 2019 with review ratings of 2 strong accepts and 1 accept (work done during an internship at NVIDIA)
arxiv: https://arxiv.org/abs/1903.09254
Vehicle Re-identification in Aerial Imagery: Dataset and Approach
intro: Northwestern Polytechnical University
arxiv: https://arxiv.org/abs/1904.01400
Deep Metric Learning
Deep Metric Learning for Person Re-Identification
intro: ICPR 2014
paper: http://www.cbsr.ia.ac.cn/users/zlei/papers/ICPR2014/Yi-ICPR-14.pdf
Deep Metric Learning for Practical Person Re-Identification
arxiv: https://arxiv.org/abs/1407.4979
Constrained Deep Metric Learning for Person Re-identification
arxiv: https://arxiv.org/abs/1511.07545
Embedding Deep Metric for Person Re-identication A Study Against Large Variations
intro: ECCV 2016
arxiv: https://arxiv.org/abs/1611.00137
DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer
intro: TuSimple
keywords: pedestrian re-identification
arxiv: https://arxiv.org/abs/1707.01220
Projects
Open-ReID: Open source person re-identification library in python
intro: Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different datasets, a full set of models and evaluation metrics, as well as examples to reproduce (near) state-of-the-art results.
project page: https://cysu.github.io/open-reid/
github(PyTorch): https://github.com/Cysu/open-reid
examples: https://cysu.github.io/open-reid/examples/training_id.html
benchmarks: https://cysu.github.io/open-reid/examples/benchmarks.html
caffe-PersonReID
intro: Person Re-Identification: Multi-Task Deep CNN with Triplet Loss
gtihub: https://github.com/agjayant/caffe-Person-ReID
Person_reID_baseline_pytorch
intro: Pytorch implement of Person re-identification baseline
arxiv: https://github.com/layumi/Person_reID_baseline_pytorch
deep-person-reid
intro: Pytorch implementation of deep person re-identification models.
github: https://github.com/KaiyangZhou/deep-person-reid
ReID_baseline
intro: Baseline model (with bottleneck) for person ReID (using softmax and triplet loss).
github: https://github.com/L1aoXingyu/reid_baseline
blog: https://zhuanlan.zhihu.com/p/40514536
gluon-reid
intro: A code gallery for person re-identification with mxnet-gluon, and I will reproduce many STOA algorithm.
github: https://github.com/xiaolai-sqlai/gluon-reid
Evaluation
DukeMTMC-reID
intro: The Person re-ID Evaluation Code for DukeMTMC-reID Dataset (Including Dataset Download)
github: https://github.com/layumi/DukeMTMC-reID_evaluation
DukeMTMC-reID_baseline (Matlab)
github: https://github.com/layumi/DukeMTMC-reID_baseline
Code for IDE baseline on Market-1501
github: https://github.com/zhunzhong07/IDE-baseline-Market-1501
Datasets
Attribute相关数据集
RAP: http://rap.idealtest.org/
Attribute for Market-1501 and DukeMTMC_reID: https://vana77.github.io/
视频相关数据集
Mars: http://liangzheng.org/Project/project_mars.html
PRID2011: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/
NLP相关数据集
自然语言搜图像: http://xiaotong.me/static/projects/person-search-language/dataset.html
自然语言搜行人所在视频: http://www.mi.t.u-tokyo.ac.jp/projects/person_search
Tutorials
1st Workshop on Target Re-Identification and Multi-Target Multi-Camera Tracking
https://reid-mct.github.io/
Target Re-Identification and Multi-Target Multi-Camera Tracking
http://openaccess.thecvf.com/CVPR2017_workshops/CVPR2017_W17.py
Person Re-Identification: Theory and Best Practice
http://www.micc.unifi.it/reid-tutorial/
Experts
Listed in No Particular Order
- Shaogang Gong - [http://www.eecs.qmul.ac.uk/~sgg/]
- Xiaogang Wang - [http://www.ee.cuhk.edu.hk/~xgwang/]
- Weishi Zheng - [http://isee.sysu.edu.cn/~zhwshi/]
- Liang Zheng - [http://www.liangzheng.com.cn/]
- Li Zhang - [http://www.robots.ox.ac.uk/~lz/]
- Xiatian Zhu - [http://www.eecs.qmul.ac.uk/~xiatian/index.html]
- Chen Change Loy - [https://staff.ie.cuhk.edu.hk/~ccloy/]
- Qi Tian - [http://www.cs.utsa.edu/~qitian/tian-publication-year.html]
- Shengcai Liao - [http://www.cbsr.ia.ac.cn/users/scliao/]
- Rui Zhao - [http://www.ee.cuhk.edu.hk/~rzhao/]
- Yang Yang - [http://www.cbsr.ia.ac.cn/users/yyang/main.htm]
- Ling Shao - [http://lshao.staff.shef.ac.uk]
- Ziyan Wu - [http://wuziyan.com/]
- DaPeng Chen - [http://gr.xjtu.edu.cn/web/dapengchen/home]
- Horst Bischof - [https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid450s]
- Niki Martinel - [http://users.dimi.uniud.it/~niki.martinel/]
- Liang Lin - [http://hcp.sysu.edu.cn/home/]
- Le An - [http://auto.hust.edu.cn/index.php?a=shows&catid=28&id=134]
- Xiang Bai - [http://mc.eistar.net/~xbai/index.html]
- Xiaoyuan Jing - [http://mla.whu.edu.cn/plus/list.php?tid=2]
- Fei Xiong - [http://robustsystems.coe.neu.edu/?q=content/research]
- DaPeng Chen - [http://gr.xjtu.edu.cn/web/dapengchen/home]
- Zhedong Zheng - [http://zdzheng.xyz/]
- Zhun Zhong - [http://zhunzhong.site/]
Resources
Re-id Resources
https://wangzwhu.github.io/home/re_id_resources.html
Zhuanzhi
http://www.zhuanzhi.ai/topic/2001183057160970
Zhihu
行人重识别: https://zhuanlan.zhihu.com/personReid
Person Re-id: https://zhuanlan.zhihu.com/re-id
Topci: https://www.zhihu.com/topic/20087378/hot
Blogs
行人重识别简介: https://www.jianshu.com/p/98cc04cca0ae
基于深度学习的Person Re-ID(综述): https://blog.csdn.net/linolzhang/article/details/71075756
行人再识别(行人重识别)【包含与行人检测的对比】: https://blog.csdn.net/liuqinglong110/article/details/41699861
行人重识别综述(Person Re-identification: Past, Present and Future): https://blog.csdn.net/auto1993/article/details/74091803
行人重识别: http://cweihang.cn/ml/reid/
行人重识别Person Re-identification总结